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Abstract   

The present work deals with the geometrically non-linear forced vibrations of beams carrying a 

concentric mass under different end conditions. Considering the axial strain energy and expanding the 

transverse displacement in the form of a finite series of spatial functions, the application of Hamilton's 

principle reduces the vibration problem to a non-linear algebraic system solved by an approximate method 

developed previously. In order to validate the approach, comparisons are made of the present solutions with 

those previously obtained by the finite element method. Focus is made here on the analysis of the non-linear 

stress distribution in the beam with an attached mass. The non-linear forced deflection shapes and their 

corresponding curvatures are presented for different magnitudes of the attached mass, different excitation 

levels and different vibration amplitudes. 
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1. INTRODUCTION 

  

In the structural design, the major concern is to 

obtain a structure which is light, resistant, and with 

a very long fatigue life. In this perspective, the 

analysis of the dynamic behaviour of a structure is 

essential in order to quantify the stress distribution, 

especially for structures with concentric elements 

such as masses, linear or rotationnal springs. 

Numerous works have been devoted to the study of 

the dynamic behaviour of free and forced beam 

structures carrying one or several masses [1] to 

[24]. The above-mentioned works have been 

limited to linear vibrations, which may introduce 

significant errors especially in the large vibration 

amplitude domain. A number of works have been 

devoted to the analysis of large vibration 

amplitudes of beams with an added mass. Saito et al 

studied the non-linear dynamic behaviour of a beam 

with an attached mass subjected to an arbitrarily 

applied force. The formulation was based on 

Galerkin's method to get an equation of motion of 

the Duffing type, solved using the harmonic 

balance method. The effects of the mass, its 

position as well as its rotational inertia on the free 

and forced responses were examined [25]. Using 

the finite element method, Raju et al analysed the 

non-linear vibrations of beams with a concentric 

mass. The effects of the attached mass, its position 

and magnitude on the non-linear behaviour of the 

beam were examined for different end conditions 

and vibration amplitudes [26].  Gutiérrez and 

Laurra examined the effect of a concentric mass on 

the large vibration amplitudes of beams and plates 

using polynomial coordinate functions. According 

to the author, the algorithm is easily applied to 

orthotropic plates and can also be applied to beams 

resting on intermediate supports [27]. Sato et al 

examined the non-linear vibrations of a beam 

carrying a point mass with a spring-mass attached 

system, subjected to a transverse periodic force at 

an arbitrary point under the influence of gravity. 

Using Galerkin's method, the non-linear differential 

equations derived were solved by applying the 

harmonic balance method [28]. Hamdan and Jubran 

tackled the free and forced vibrations of a cantilever 

beam, held at its free end by a translational spring 

and carrying a concentrated mass arbitrarily 

located. The beam equation of motion was solved 

to obtain the mode shape functions, used 

subsequently in conjunction with Galerkin's method 

to obtain the beam free and forced response. The 

effect of the spring stiffness, the concentric mass 

and its position were examined through a 

parametric study [29].  Using two perturbation 

approaches, Pakdemirli and Nayfeh studied the 

non-linear response of a simply supported beam 

attached to a spring-mass system at its primary 

resonance, considering the effects of stretching and 

damping of the mid-plane of the beam. The first 

approach consisted on applying the multiple-scale 

method to the non-linear partial differential 

equations and end conditions, and the second on 

averaging the Lagrangian over the fast time scale to 

obtain the amplitude and phase governing 

equations. It has been shown that the frequency-
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response and the forced response curves depend on 

the mid-plane stretching and on the parameters of 

the spring-mass system [30].  Neglecting the shear 

strains and the rotational inertia, and considering 

the axial inertia of the nonlinear curvature and the 

inextensibility condition, Hamdan and Dado 

analysed the large free vibration amplitudes of a 

thin, inextensible cantilever beam with a mass 

possessing a rotational inertia. A single-mode 

Lagrangian method was applied to form the third 

order non-linear unimodal time problem and the 

two-term harmonic balance (2THB) method was 

subsequently used to obtain an approximate 

solution of the oscillation period. The effect of the 

mass, its position and of the rotational inertia on the 

oscillation period and its variation with the 

amplitude was investigated [31]. Applying the 

multiple-scale method, Özkaya et al studied free 

and forced nonlinear vibrations of an Euler-

Bernoulli beam with a point mass including the 

damping effect.  The effects of the position and 

magnitude of the attached mass were identified, as 

well as the effects of end conditions on the beam 

dynamic behaviour [32]. Neglecting the shear 

strains and the rotational inertia, and considering 

axial inertia and non-linear curvatures, Hamdan and 

Shabaneh studied the high free vibration amplitudes 

of a thin, inextensible-cantilevered beam carrying 

an intermediate mass. Two different approaches 

were used to formulate the equation of motion, the 

first used Hamilton's principle to obtain the 

equation of motion of the partial differential field, 

and then a single mode approximation was used in 

conjunction with the Rayleigh-Ritz method to 

reduce the equation to a non-linear, single mode, 

Duffing-type time problem. The second approach 

involved a single mode Lagrangian method that 

considers the inextensibility condition, and directly 

forms the unimodal five order nonlinear time 

problem. Results were illustrated showing the effect 

of the mass position and the mass magnitude on the 

variation of the oscillation period with amplitude 

[33]. Low et al studied experimentally lateral 

vibrations of an axially constrained beam with a 

concentrated mass [34]. Karlik et al examined the 

non-linear vibrations of an Euler-Bernoulli beam 

carrying a concentrated mass by considering 

different cases of end conditions. Using the 

Newton-Raphson method, a parametric study led to 

determination of the natural frequencies for 

different mass magnitudes, mass locations and end 

conditions. Non-linear correction coefficients were 

calculated using the multiple scale method. The 

linear and non-linear results were used in training a 

multi-layer, feed forward, backpropagation artificial 

neural network algorithm. This algorithm 

essentially aims to reduce the computation time and 

allows results to be obtained with an error ranging 

from 0.5 for linear analysis to 1.5 for non-linear 

analysis [35]. Using the multi-scale method, 

Özkaya and Pakdemirli analysed the free and 

forced nonlinear vibrations of a restrained beam 

carrying a concentric mass. The perturbation 

method provided the backbone curves and the non-

linear frequency-response curves [36].  Cheng et al 

examined the large vibration amplitudes of a 

cantilever beam carrying a mass and subjected to 

random base excitation by combining the large 

amplitude vibration theory of inextensible beams 

with the stochastic linearization method. The effect 

of mass and rotational inertia on the beam dynamic 

behaviour was examined [37].  Considering the 

damping effect, Özkaya analysed the nonlinear free 

and forced vibrations of an Euler-Bernoulli beam 

with concentric masses. Approximate solutions 

were obtained using the perturbation method, 

allowing examination of the effect of the added 

masses, their locations and number on the beam 

dynamic behaviour [38]. Rao et al studied the large-

amplitude vibrations of a uniform Timoshenko 

beam carrying a centrally concentrated mass using 

the coupled displacement field method. The results 

show the effect of the attached mass on the linear 

and nonlinear behaviour of the beam [39].  Ghayesh 

et al have developed a general solution procedure 

using the multiple time scale method for the 

vibrations of systems with cubic nonlinearities, 

subjected to nonlinear internal time-dependent 

boundary conditions [40]. Nikkar et al tackled the 

large vibration amplitudes of a uniform cantilever 

beam with an intermediate attached mass using the 

variational iteration method and He’s variational 

approach to solve the equation of motion. The 

results showed a good agreement with those 

obtained by the Range-Kutta fourth order method 

[41].  Souayeh and Kacem developed a model 

integrating both geometric and electrostatic 

nonlinearities for the computation of nonlinear 

vibrations of electrostatically actuated carbon 

nanotube-based mass sensors. The Galerkin 

discretization method was used to reduce the 

continuous model, solved by the harmonic 

equilibrium method coupled with the asymptotic 

numerical method [42].  Barry et al extended the 

work previously developed by [30] to examine the 

non-linear vibrations of a beam subjected to an 

axial force and carrying multiple mass-spring-

damper systems. The effect of the amplitude and 

the position of the mass-spring-damper system on 

the dynamic behaviour of the beam was studied 

[43]. Considering the effect of an axial force, 

Malaeke and Moeenfard examined the large free 

vibration amplitudes of a non-uniform cantilever 

beam carrying an eccentric mass both transversely 

and axially. The partial differential equations, 

obtained using Hamilton's principle, were reduced 

by a single-mode approximation in conjunction 

with Lagrange's method and solved using the 

multiple time-scale perturbation technique [44].  

Sadri studied the nonlinear forced vibrations of a 

cantilever beam with an intermediate lumped mass 

using Hamilton's principle to obtain the equation of 

motion and the multiple scales method to solve it. 

The effects of the damping, the force level and the 
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initial conditions on the beam dynamic behaviour 

were examined [45].  Lotfan and Sadeghi analysed 

the nonlinear vibrations of a viscoelastic beam 

described by the Kelvin-Voigt model, and 

incorporating a mass-spring damper. The nonlinear 

equations of motion were obtained by Hamilton's 

principle and solved by the multiple scales method 

[46].  Rahmouni and Benamar extended the discrete 

model developed for uniform beams in [?] to study 

the geometrically nonlinear vibrations of beams 

with one concentric mass in [47] and with three 

added masses in [48]. Comparison of the results 

obtained with those found in the literature 

established the effectiveness of the discrete model 

in studying linear and nonlinear vibrations of beams 

with different types of discontinuities. Bukhari and 

Barry analysed the nonlinear vibrations of an Euler-

Bernoulli beam carrying a mass-spring system. 

Hamilton's principle was used to obtain the 

equations of motion, solved by the multi-scale 

method [49]. 

The purpose of the present paper is to 

investigate the non-linear forced vibrations of 

beams carrying a concentrated mass under different 

end conditions. The mathematical model is based 

on the Euler-Bernoulli beams theory and the von 

Karman geometrical non-linearity assumptions. 

Harmonic motion is assumed and the displacement 

is expanded in the form of a finite series of spatial 

functions determined by solving the linear problem. 

Using Hamilton’s principle, the problem is reduced 

to a set of non-linear algebraic equations solved by 

the so-called second formulation developed in [50]. 

The non-linear forced deflection shapes and their 

corresponding curvatures are presented, for 

different magnitudes of the added mass, different 

excitation levels and different vibration amplitudes. 

The objective is to describe the geometrically 

nonlinear behaviour of a beam with an attached 

mass and specifically to estimate the nonlinear 

stress distribution in the case of large transverse 

vibration amplitudes of the restrained beam excited 

by a high-level harmonic force. 

  
2. GENERAL FORMULATION 

  
In the present study, an Euler-Bernoulli beam 

with the following geometrical and material 

characteristics (L, b, h, I, E, A, rho), subjected to 

transverse vibrations is considered. The beam 

carries a mass at an arbitrary position x, magnitude 

M and inertia J. Two scenarios are considered, in 

the first one the beam is subjected to a concentric 

force and in the second to a distributed force. The 

dynamic behaviour of a conservative system can be 

obtained by applying the Hamilton’s principle that 

can be written in the form [51]:  

 ( )
2π ω

0
- + = 0F dt  V T W  (1) 

In which V , Tand FW are the beam total strain 

energy, the kinetic energy and the work done by the 

excitation force F respectively.  Considering large 

vibration amplitudes, V can be written as the sum 

of the axial strain energy aV due to the nonlinear 

stretching forces and the bending strain energy bV . 

The expressions of aV , bV  and T  are:  
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W being the transverse displacement of the beam, 

M the mass magnitude and J the rotational inertia of 

the attached mass. Assuming harmonic motion and 

expanding the displacement in the form of a series 

of functions, the transverse displacement can be 

written as in [47]: 
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By replacing W  in the expressions for the energies, 

aV , 
bV , T  can be written in the form: 
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Where ijk  denotes the classical rigidity tensor 

defined by: 
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ijklb the non-linearity tensor given by: 
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ijm the mass tensor obtained as: 
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A uniform beam excited by the force ( ),F x t over 

the sub range S of the interval [0,L] is considered. 

The force excites the beam modes via a set of 
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generalized forces iF  that depend on the expression 

for F , the excitation point for a concentrated 

excitation, the excitation length for a distributed 

force and the mode under consideration. The 

generalized forces ( )iF t  are given by: 

 ( ) ( ) ( )
S

=i iF x,t w x dxF t  (1) 

The non-linear behaviour of the beam is studied 

first for a point force cF  applied at the point fx  

and then for a distributed harmonic force. The two 

excitation cases are defined by: 

 ( ) ( )= sin d dF x,t f t  (1) 

 ( ) ( ) ( )= sin   −c c

fF x,t f t x x  (1) 

In which δ is the Dirac function, ( )d
iF t  and ( )c

iF t  

are the corresponding generalized forces given by: 
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After calculations, the following non-linear 

system is obtained: 
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The dimensionless generalized forces 
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if  and  
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if  can be written as: 
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After substituting these notations in equation (17), 

the following nonlinear algebraic system is 

obtained: 
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It has previously been shown that the contribution 

of one mode remains predominant relatively to the 

others for the range of amplitudes considered. To 

indicate that the contributions of the other modes 

remain small, they are denoted by i , while the 

predominant mode is denoted ra .  

According to [50], by separating in the non-linear 

expression *

ijkri j ka a a b terms proportional to 
3
1a , 

terms proportional to 
2
1 ia  , and by neglecting the 

terms which are proportional to 1 i ja    and terms 

proportional to i j k    one may write: 

 3 2
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Equation (22) can then be written near the thr  mode 

as follows: 
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With * * 2 *
r r ijrr

R R
a b =   
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. Equation (25) is an 

approximate linear system, very easy to solve in 

order to get the contribution coefficients to the non-

linear beam forced response. 

3. RESULT AND DISCUSSION 

To validate the presented approach, the results are 

compared with those obtained by the finite element 

method developed previously in [26], for two 

scenarios of boundary conditions: The first table 

shows results for a fully clamped beam and the 

second shows the results for a beam simply 

supported on both sides. The comparison includes 

also several changes in the mass magnitude and 

location, and vibration amplitudes. 
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Table 1. Comparison of the present results with those obtained by the finite element method for a C-

C beam carrying a concentrated mass 

 Mass position Amplitude 0.4 0.8 1 2 

Reference [26]  1/8 

0.2 1.0035 1.0138 1.0215 1.0825 

0.6 1.0034 1.0136 1.0212 1.0811 

1 1.0034 1.014 1.0217 1.0834 

Present  1/8 

0.2 1.0036 1.0142 1.0222 1.0865 

0.6 1.0035 1.0141 1.0219 1.0858 

1 1.0035 1.0138 1.0216 1.0849 

Relative difference 

0.2 0.0072% 0.0424% 0.0651% 0.3701% 

0.6 0.0127% 0.0451% 0.0691% 0.4313% 

1 0.0072% 0.0148% 0.0104% 0.1402% 

Reference [26]  1/4 

0.2 1.0035 1.014 1.0217 1.0834 

0.6 1.0036 1.0143 1.0222 1.0856 

1 1.0037 1.0147 1.0228 1.0881 

Present  1/4 

0.2 1.0035 1.0141 1.0220 1.0862 

0.6 1.0034 1.0137 1.0214 1.0846 

1 1.0033 1.0133 1.0208 1.0830 

Relative difference 

0.2 0.0045% 0.0128% 0.0313% 0.2612% 

0.6 0.0170% 0.0597% 0.0812% 0.0940% 

1 0.0366% 0.1353% 0.1938% 0.4661% 

Reference [26]  3/8 

0.2 1.0036 1.0142 1.022 1.0844 

0.6 1.0036 1.0144 1.0224 1.086 

1 1.0037 1.0145 1.0226 1.0869 

Present  3/8 

0.2 1.0036 1.0143 1.0223 1.0869 

0.6 1.0036 1.0142 1.0221 1.0862 

1 1.0035 1.0141 1.0219 1.0858 

Relative difference 

0.2 0.0007% 0.0108% 0.0282% 0.2300% 

0.6 0.0040% 0.0216% 0.0303% 0.0218% 

1 0.0164% 0.0406% 0.0637% 0.1055% 

Reference [26]  1/2 

0.2 1.0035 1.0138 1.0215 1.0823 

0.6 1.0035 1.0137 1.0213 1.0816 

1 1.0034 1.0137 1.0213 1.0814 

Present  1/2 

0.2 1.0036 1.0144 1.0223 1.0868 

0.6 1.0036 1.0144 1.0223 1.0867 

1 1.0036 1.0143 1.0223 1.0866 

Relative difference 

0.2 0.0106% 0.0547% 0.0828% 0.4166% 

0.6 0.0107% 0.0647% 0.1022% 0.4684% 

1 0.0205% 0.0637% 0.1006% 0.4786% 
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Table 2. Comparison of the present results with those obtained by the finite element method for a 

S-S beam carrying a concentrated mass 

 Mass position Amplitude 0.4 0.8 1 2 

Reference [26]  1/8 

0.2 1.015 1.0584 1.0897 1.3157 

0.6 1.0153 1.0595 1.0914 1.3226 

1 1.0155 1.0604 1.0928 1.3287 

Present  1/8 

0.2 1.0149 1.0585 1.0900 1.3244 

0.6 1.0149 1.0586 1.0902 1.3276 

1 1.0149 1.0585 1.0903 1.3309 

Relative difference 

0.2 0.0075% 0.0052% 0.0260% 0.6586% 

0.6 0.0365% 0.0887% 0.1067% 0.3768% 

1 0.0609% 0.1804% 0.2332% 0.1687% 

Reference [26]  1/4 

0.2 1.015 1.0587 1.09 1.3173 

0.6 1.0153 1.0596 1.0916 1.3243 

1 1.0154 1.0602 1.0925 1.3286 

Present  1/4 

0.2 1.0149 1.0584 1.0900 1.3251 

0.6 1.0148 1.0582 1.0898 1.3281 

1 1.0147 1.0578 1.0893 1.3298 

Relative difference 

0.2 0.0086% 0.0246% 0.0008% 0.5937% 

0.6 0.0482% 0.1332% 0.1680% 0.2894% 

1 0.0703% 0.2239% 0.2891% 0.0899% 

Reference [26]  3/8 

0.2 1.0147 1.0574 1.088 1.3089 

0.6 1.0146 1.0568 1.0871 1.3055 

1 1.0145 1.0565 1.0866 1.3036 

Present  3/8 

0.2 1.0148 1.0580 1.0893 1.3218 

0.6 1.0147 1.0576 1.0886 1.3204 

1 1.0146 1.0572 1.0882 1.3196 

Relative difference 

0.2 0.0118% 0.0609% 0.1235% 0.9855% 

0.6 0.0080% 0.0710% 0.1415% 1.1430% 

1 0.0088% 0.0690% 0.1457% 1.2294% 

Reference [26]  1/2 

0.2 1.0145 1.0564 1.0865 1.3026 

0.6 1.0142 1.0551 1.0844 1.2940 

1 1.0140 1.0545 1.0834 1.2900 

Present  1/2 

0.2 1.0147 1.0577 1.0888 1.3191 

0.6 1.0146 1.0572 1.0880 1.3161 

1 1.0145 1.0569 1.0875 1.3148 

Relative difference 

0.2 0.0244% 0.1261% 0.2146% 1.2702% 

0.6 0.0393% 0.1948% 0.3274% 1.7082% 

1 0.0516% 0.2246% 0.3803% 1.9218% 

 

Tables 1 and 2 show a very good agreement 

between the results of the present method and those 

of the literature, since the relative difference varies 

from 0.02 to 0.47% in the case of a fully clamped 

beam and from 0.05 to 1.92% in the case of a 

simply supported beam, for a maximum non-

dimensional amplitude "Wmax=2". 

The analysis of the forced case via the method 

mentioned above requires determination of the 

mode predominant in the beam response 
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corresponding to the level and location of the 

excitation force.  Table 3 gives the numercal values 

of the generalized forces corresponding to the 

different modes for a beam excited at its centre, for 

three different excitation levels. 

 

 
Table 3. Percentage of generalised forces exciting the first five symmetric modes of a Clamped-Clamped beam carrying 

concentrated mass at the middle 

 Modes 1 3 5 7 9 

 

Fc=10 

*( )c

i fF w x
 

10.65 5.32 3.87 2.99 2.43 

* *

1

( ) ( )
n

c c

i f i f

i

F w x F w x
=


 

42.14 21.08 15.31 11.84 9.63 

 

Fc=100 

*( )c

i fF w x
 

106,49 53,26 38,69 29,91 24,32 

* *

1

( ) ( )
n

c c

i f i f

i

F w x F w x
=


 

42.14 21.08 15.31 11.84 9.63 

 

Fc=200 

*( )c

i fF w x
 

212,98 106,53 77,38 59.82 48.65 

* *

1

( ) ( )
n

c c

i f i f

i

F w x F w x
=


 

42.14 21.08 15.31 11.84 9.63 

 

It appears clearly from Table 3, that, for the 

beam considered, the first mode remains 

predominant for the three excitation levels 

considered. The study of the forced case will then 

focus on the solution of the system in the vicinity of 

the first mode as described in the general 

formulation presented above.  

The curvatures associated to the non-linear 

forced response are shown in Figure1 for different 

magnitudes of the concentric mass (m*=0.25, 

m*=0.5, m*=1), for the same maximum non-

dimensional amplitude “Wmax=1.5” and for a 

concentric force applied at the beam centre, with 

intensity corresponding to “fc=100”.  It can be seen 

that as the magnitude of the mass increases, the 

stress also increases at the beam centre were the 

mass is attached, but decreases near to the clamps. 

It should also be noted in table 4, that the non-

linearity effect becomes more pronounced in the 

middle of the beam by increasing the magnitude of 

the mass. The percentage correction introduced by 

the non-linear theory compared to the linear theory 

increases from 1.06% for a mass of 0.25 to 5.32% 

for a mass of 0.5, and to 9.09% for a mass of 

magnitude equal to 1. On the other hand, a decrease 

of the effect can be noticed in the vicinity of the 

clamps. Figure 2 show the non-linear forced 

curvatures for different levels of excitation (fc=0, 

fc=100, fc=200), for the same maximum non-

dimensional amplitude "Wmax=2" and for a mass 

attached at the middle of the beam, with a 

magnitude "m*=0.5".  It can be observed that the 

concentric force increases the stress at the beam 

middle (where the mass is attached), but decreases 

it near to the clamps.  It is clearly shown that the 

stress variation is not proportional to the force level 

as the principle of superposition applied in the 

linear domain is invalid at large vibration 

amplitudes. It should be noted in table 5, that by 

increasing the intensity of the force the effect of 

non-linearity increases near the clamps but 

decreases in the middle. For example, for a free 

beam, the correction percentage is estimated at 

24.83% near the recesses but is less at the middle of 

the beam with 10.32%. The correction percentage 

increases afterwards by applying a force of 100N at 

25.54 near the clamps but decreases to 9.51 at the 

beam centre. The non-linear forced vibration 

deflections shapes and their associated curvatures 

are respectively plotted in figures 5 and 6 for 

different amplitudes of vibration (Wmax=0.8, 

Wmax=1, Wmax=1.5, Wmax=2), for the same 

mass magnitude “m*=0.5” and for a concentric 

force applied at the middle of the beam, with an  

intensity: “fc=100”. It is clear that the amplitude of 

vibration increases considerably the stresses at both 

the mass location and near to the clamps, which 

constituted the main motivation for the present 

study. In table 6, it seems very clear that the effect 

of non-linearity increases considerably by 

increasing the vibration amplitude either in the 

middle of the beam or in the vicinity of the clamps. 

In the vicinity of the clamps, the percentage of 

correction introduced by the non-linear theory 

compared to the linear theory increases for example 

from 6.05% for a maximum non-dimensional 

amplitude of 0.8 to 25.85% for a maximum non-

dimensional amplitude of 2. The percentage also 

increases in the middle of the beam but is less 

pronounced since it varies only from 1.35% to 

9.51% for the same example. 
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Figure 1. Curvatures corresponding to the non-linear response deflection shapes for various mass magnitudes. 

 
Table 4. Effect of mass variation on the percentage correction introduced by the non-linear theory compared to the linear 

theory 

Mass 0.25 0.5 1 

Clamps 18.97 17.53 16.44 

Middle of the beam 1.06 5.32 9.09 

 

 
Figure 2. Curvatures corresponding to the non-linear deflection response function for various excitation levels 

 

Table 5. Effect of force variation on the percentage correction introduced by the non-linear theory compared to the linear 

theory 

Force 0 100 200 

Clamps 24.83 25.54 26.13 

Middle of the beam 10.32 9.51 8.63 
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Figure 3. Curvatures corresponding to the non-linear response deflection shapes for various amplitudes 

 
Table 6. Effect of mass variation on the percentage correction introduced by the non-linear theory compared to the linear 

theory 

Amplitudes 0.8 1 1.5 2 

Clamps 6.05 9.51 17.53 25.85 

Middle of the beam 1.35 2.22 5.32 9.51 

 

  CONCLUSIONS 

  

The geometrically non-linear forced vibrations 

of a uniform beam carrying a concentrated mass 

were examined. The expressions for the kinetic and 

potential energies were derived and, by applying 

Hamilton's principle, the problem was reduced to a 

non-linear algebraic system solved by an 

approximate method. The results were then 

compared with those obtained by the finite element 

method and showed a very good agreement since 

the relative difference does not exceed 0.47% for 

the case of a fully clamped beam and does not 

exceed 1.92% for a beam with simple supports. The 

forced non-linear mode shapes and their associated 

curvatures were illustrated for different types of 

excitations, different magnitudes of the attached 

mass, different levels of excitation and different 

amplitudes. It was noticed that the stresses increase 

by increasing the magnitude of the mass and 

decrease near to the clamps. It was clearly noticed 

that the greater the amplitude, the greater the 

distribution of stresses for the same beam 

considered, carrying the same mass and subjected 

to the same excitation. The analysis also led to a 

quantitative estimate of the percentage correction 

introduced by the non-linear theory compared to the 

linear theory. 
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